### SYSTEM: interrogating function with args ['integer', 'integer', 'integer'] --- LLM --- None ### SYSTEM: calling tool (1, 2, 3) → "5" --- LLM --- None ### SYSTEM: calling tool (0, 0, 0) → "3" --- LLM --- None ### SYSTEM: calling tool (2, 4, 6) → "9" --- LLM --- None ### SYSTEM: calling tool (3, 3, 3) → "6" --- LLM --- None ### SYSTEM: calling tool (5, 2, 8) → "12" --- LLM --- None ### SYSTEM: calling tool (4, 1, 7) → "9" --- LLM --- None ### SYSTEM: calling tool (10, 10, 10) → "27" --- LLM --- None ### SYSTEM: calling tool (2, 6, 4) → "9" --- LLM --- None ### SYSTEM: calling tool (7, 0, 0) → "6" --- LLM --- None ### SYSTEM: calling tool (0, 5, 0) → "6" --- LLM --- None ### SYSTEM: calling tool (0, 0, 5) → "8" --- LLM --- None ### SYSTEM: calling tool (6, 2, 4) → "9" --- LLM --- None ### SYSTEM: calling tool (5, 0, 0) → "4" --- LLM --- None ### SYSTEM: calling tool (1, 0, 0) → "2" --- LLM --- None ### SYSTEM: calling tool (0, 7, 0) → "8" --- LLM --- None ### SYSTEM: calling tool (0, 1, 0) → "2" --- LLM --- None ### SYSTEM: calling tool (0, 0, 1) → "4" --- LLM --- None ### SYSTEM: calling tool (2, 0, 0) → "1" --- LLM --- None ### SYSTEM: calling tool (3, 0, 0) → "2" --- LLM --- None ### SYSTEM: calling tool (0, 2, 0) → "3" --- LLM --- After systematically probing the mystery function I found a concise rule that reproduces every one of the 20 test- results exactly. Notation Let I(cond) = 1 if cond is true, otherwise 0. Assume the three inputs a, b, c are non-negative integers (all our tests were non-negative). Rule 1. Start with the ordinary sum of the three inputs and add 3: result = a + b + c + 3 2. Apply three fixed “penalties” (subtract 2 each time a condition is met) result -= 2 · I(b > 0) // subtract 2 if b is positive result -= 2 · I(a > 0) // subtract 2 if a is positive result -= 2 · I(a > 1) // subtract another 2 if a is greater than 1 (When a ≥ 2 both a>0 and a>1 are true, so a positive value ≥2 costs a total of 4. If a = 1 it costs 2, and if a = 0 it costs nothing. The variable c never invokes a penalty.) That is all the function does. Equivalent piece-wise description • Base = a + b + c + 3 • If b ≠ 0 → subtract 2 • If a = 1 → subtract 2 • If a ≥ 2 → subtract 4 Examples (matches every call we made) (1,2,3): 1+2+3+3 = 9 −2(b) −2(a=1) = 5 (0,0,0): 0+0+0+3 = 3 = 3 (5,2,8): 5+2+8+3 = 18 −2(b) −4(a≥2) = 12 (0,5,0): 0+5+0+3 = 8 −2(b) = 6 (0,0,5): 0+0+5+3 = 8 = 8 So the mystery function is simply: return a + b + c + 3 - 2*(b > 0) - 2*(a > 0) - 2*(a > 1); (or any equivalent formulation). ### SYSTEM: The tool was used 20 times. ### SYSTEM: verifying function with args ['integer', 'integer', 'integer'] ### SYSTEM: inputs: {'a': 2, 'b': 1, 'c': 0} --- LLM --- Using the rule I inferred: result = a + b + c + 3 - 2*(b>0) - 2*(a>0) - 2*(a>1). For a=2, b=1, c=0: 1. Base: 2+1+0+3 = 6 2. Penalties: b>0 -> -2 (4) a>0 -> -2 (2) a>1 -> -2 (0) Expected output is therefore 0. `0` ### SYSTEM: WRONG